Cumulative Genetic Risk Predicts Platinum/Taxane-Induced Neurotoxicity (ovarian cancer patients) Ovarian Cancer and Us OVARIAN CANCER and US Ovarian Cancer and Us

Blog Archives: Nov 2004 - present

#ovariancancers



Special items: Ovarian Cancer and Us blog best viewed in Firefox

Search This Blog

Sunday, October 27, 2013

Cumulative Genetic Risk Predicts Platinum/Taxane-Induced Neurotoxicity (ovarian cancer patients)



abstract


Purpose: The combination of a platinum and taxane are standard of care for many cancers, but the utility is often limited due to debilitating neurotoxicity. We examined whether single-nucleotide polymorphisms (SNP) from annotated candidate genes will identify genetic risk for chemotherapy-induced neurotoxicity

Patients and Methods: A candidate–gene association study was conducted to validate the relevance of 1,261 SNPs within 60 candidate genes in 404 ovarian cancer patients receiving platinum/taxane chemotherapy on the SCOTROC1 trial. Statistically significant variants were then assessed for replication in a separate 404 patient replication cohort from SCOTROC1. 

Results: Significant associations with chemotherapy-induced neurotoxicity were identified and replicated for four SNPs in SOX10, BCL2, OPRM1, and TRPV1. The population attributable risk for each of the four SNPs ranged from 5% to 35%, with a cumulative risk of 62%. According to the multiplicative model, the odds of developing neurotoxicity increase by a factor of 1.64 for every risk genotype. Patients possessing three risk variants have an estimated OR of 4.49 (2.36–8.54) compared to individuals with 0 risk variants. Neither the four SNPs nor the risk score were associated with progression-free survival or overall survival.
 
Conclusions: This study shows that SNPs in four genes have a significant cumulative association with increased risk for the development of chemotherapy-induced neurotoxicity, independent of patient survival.  

0 comments :

Post a Comment

Your comments?

Note: Only a member of this blog may post a comment.