Minor changes in expression of the mismatch repair protein MSH2 exert a major impact on glioblastoma response to temozolomide Ovarian Cancer and Us OVARIAN CANCER and US Ovarian Cancer and Us

Blog Archives: Nov 2004 - present

#ovariancancers



Special items: Ovarian Cancer and Us blog best viewed in Firefox

Search This Blog

Monday, June 01, 2015

Minor changes in expression of the mismatch repair protein MSH2 exert a major impact on glioblastoma response to temozolomide



abstract

 Glioblastoma (GBM) is often treated with the cytotoxic drug temozolomide (TMZ) but the disease inevitably recurs in a drug-resistant form after initial treatment. Here we report that in GBM cells even a modest decrease in the mismatch repair (MMR) components MSH2 and MSH6 have profound effects on TMZ sensitivity. RNAi-mediated attenuation of MSH2 and MSH6 showed that such modest decreases provided an unexpectedly strong mechanism of TMZ resistance. In a mouse xenograft model of human GBM, small changes in MSH2 were sufficient to suppress TMZ-induced tumor regression. Using the Cancer Genome Atlas to analyze mRNA expression patterns in tumors from TMZ-treated GBM patients, we found that MSH2 transcripts in primary GBM could predict patient responses to initial TMZ therapy. In recurrent disease, the absence of microsatellite instability (the standard marker for MMR deficiency) suggests a lack of involvement of MMR in the resistant phenotype of recurrent disease. However, more recent studies reveal that decreased MMR protein levels occur often in recurrent GBM. In accordance with our findings, these reported decreases may constitute a mechanism by which GBM evades TMZ sensitivity while maintaining microsatellite stability. Overall, our results highlight the powerful effects of MSH2 attenuation as a potent mediator of TMZ resistance, and argue that MMR activity offers a predictive marker for initial therapeutic response to TMZ treatment.

0 comments :

Post a Comment

Your comments?

Note: Only a member of this blog may post a comment.