An update on current and emerging therapies for epithelial ovarian cancer: Focus on poly(adenosine diphosphate-ribose) polymerase inhibition and antiangiogenesis Ovarian Cancer and Us OVARIAN CANCER and US Ovarian Cancer and Us

Blog Archives: Nov 2004 - present

#ovariancancers



Special items: Ovarian Cancer and Us blog best viewed in Firefox

Search This Blog

Wednesday, June 29, 2016

An update on current and emerging therapies for epithelial ovarian cancer: Focus on poly(adenosine diphosphate-ribose) polymerase inhibition and antiangiogenesis



abstract:
An update on current and emerging therapies for epithelial ovarian cancer: Focus on poly(adenosine diphosphate-ribose) polymerase inhibition and antiangiogenesis June 29, 2016

 http://opp.sagepub.com/local/img/pub-logo.gif

Epithelial ovarian cancer is the leading cause of death from gynecologic tumors in western countries. Newly diagnosed epithelial ovarian cancer patients usually have good initial response to combination of platinum-based and taxane-based chemotherapy. However, most patients eventually experience relapses, and responses to subsequent therapies are generally short-lived. Intraperitoneal chemotherapy has been shown to improve survival outcomes, but toxicities and logistics limit its acceptance. Dose-dense schedule of paclitaxel combined with carboplatin remains controversial, and more studies are needed to validate this approach. About 15% of epithelial ovarian cancer patients carry gene mutations in BRCA1 and/or BRCA2. The development of poly(adenosine diphosphate-ribose) polymerase inhibitors represents a novel therapeutic strategy, in which poly(adenosine diphosphate-ribose) inhibition leads to the formation of double-stranded DNA breaks that cannot be accurately repaired in BRCA1- or BRCA2-mutated tumors, thus leading to tumor cell death. This principle of synthetic lethality can be demonstrated by olaparib, an oral agent that inhibits the repair of single strand DNA breaks during DNA replication, causing defective homologous recombination and hence tumor cell death. Currently, many poly(adenosine diphosphate-ribose) inhibitors are in different phases of development. Furthermore, mechanisms of defective homologous recombination pathway may include other genetic and epigenetic abnormalities in addition to either germline or somatic BRCA1 and/or BRCA2 mutations, making these pathways as potential therapeutic targets. The clinical pharmacology, clinical efficacy, safety, administration issues of olaparib and current clinical development of poly(adenosine diphosphate-ribose) inhibitors are described in this article, along with an overview on the treatment options (including intraperitoneal chemotherapy and dose-dense chemotherapy) for epithelial ovarian cancer. On the other hand, overexpression of the vascular endothelial growth factor and increased angiogenesis are associated with the development and progression of epithelial ovarian cancer. Although there are some expected toxicities associated with antiangiogenesis, combination of bevacizumab and systemic chemotherapy improves the progression-free survival and response rate compared to chemotherapy alone. The clinical efficacy of adding bevacizumab and its safety for advanced epithelial ovarian cancer is also reviewed, with emerging data on antiangiogenesis therapy.

0 comments :

Post a Comment

Your comments?

Note: Only a member of this blog may post a comment.