OVARIAN CANCER and US

Blog Archives: Nov 2004 - present

#ovariancancers



Special items: Ovarian Cancer and Us blog best viewed in Firefox

Search This Blog

Tuesday, April 07, 2015

Association Between Perioperative Low-Molecular-Weight Heparin vs Unfractionated Heparin and Clinical Outcomes in Patients With Cancer Undergoing Surgery



abstract


Bottom Line  When used for perioperative thromboprophylaxis, there are no differences in the association of LMWH vs unfractionated heparin for preventing mortality, pulmonary embolism, deep venous thrombosis, bleeding outcomes, or thrombocytopenia in patients with cancer.

Association of Type and Location of BRCA1 and BRCA2 Mutations With Risk of Breast and Ovarian Cancer



abstract


Importance  Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists.

Objective  To identify mutation-specific cancer risks for carriers of BRCA1/2.

Design, Setting, and Participants  Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19 581 carriers of BRCA1 mutations and 11 900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk.

Exposures  Mutations of BRCA1 or BRCA2.

Main Outcomes and Measures  Breast and ovarian cancer risks.

Results  Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10−6), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2′, RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10−9). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10−17). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1′; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% CI, 1.69-3.16; P  = .00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% CI, 0.44-0.60; P = 6 × 10−17). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% CI, 0.41-0.80; P  = .001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers.

Conclusions and Relevance  Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.